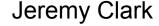
Provisions

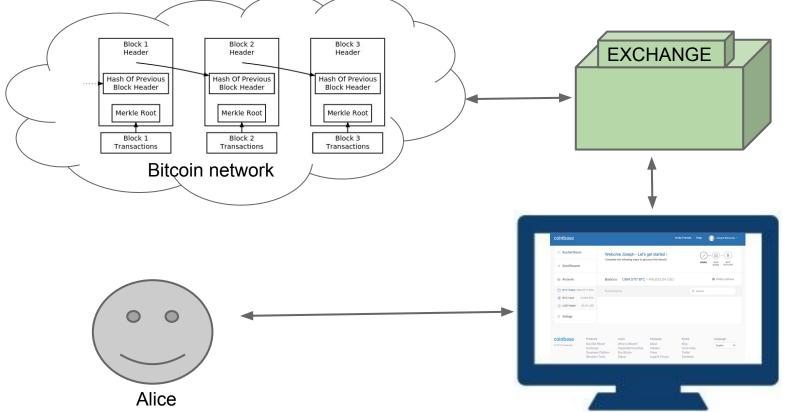
Privacy-preserving proofs of solvency for Bitcoin exchanges

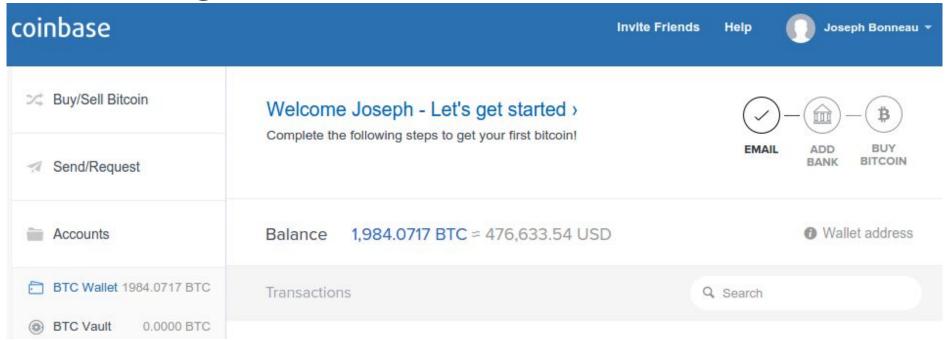
Real World Crypto 2016


eprint.iacr.org/2015/1008.pdf github.com/bbuenz/provisions

Gaby Dagher

Benedikt Bünz

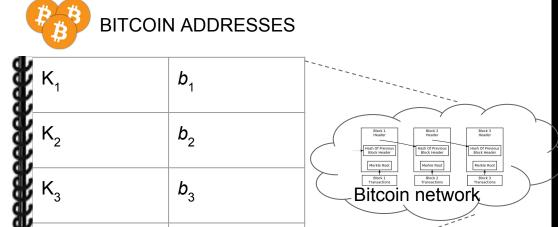




Many users use Bitcoin via exchanges

Exchanges look a lot like online banks

Exchanges have a shaky track record


Mt. Gox: lost roughly US\$450M Subsequent price crash

~50% have failed! [Moore, Christin 2013]

Goal: prove solvency

8	Alice	b _A
	Bob	b _B
	Charlie	b _C
	TOTAL LIABILITIES	$b_A + b_b + b_c + \dots$

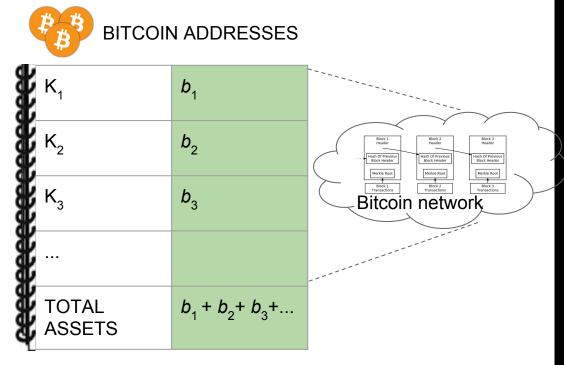
 $b_1 + b_2 + b_3 + \dots$

Solvency ⇔ Total Liabilities ≤ Total Assets

TOTAL

ASSETS

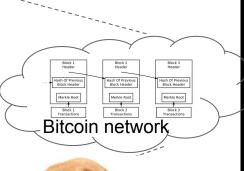
full reserve


Proofs of solvency have limitations

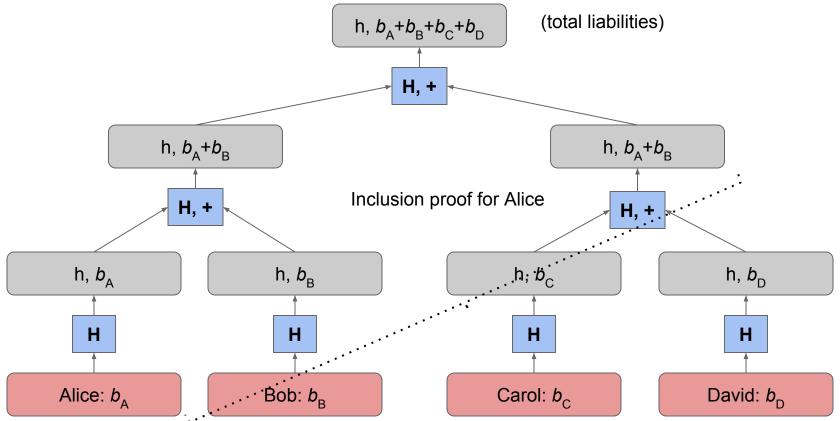
- Proof of solvency is a snapshot
- Proof of solvency ≠ willingness to pay

Approach #1: publish everything

*	Alice	b _A
\$	Bob	b _B
	Charlie	b _C
*		
*	TOTAL LIABILITIES	$b_{A} + b_{b} + b_{c} + \dots$


Approach #2: trusted auditor

Alice	b _A
Bob	b _B
Charlie	b _C
<u></u>	
TOTAL LIABILITIES	$b_{A} + b_{b} + b_{c} +$



K ₁	b ₁	•
K ₂	b ₂	(
K ₃	b ₃	
TOTAL ASSETS	$b_1 + b_2 + b_3 + \dots$	

Looks good to me!

Solution #3a: Maxwell protocol [2013]

Solution #3b: public proof of assets

Maxwell protocol considered too leaky

"Maxwell's proposal would have required bitcoin companies to reveal all of their balance-containing addresses. This method would result in the public knowledge of exchanges' or wallet providers' bitcoin wallets and total holdings, information that is commercially sensitive and presents potential security risks to companies and users."

Improving on Maxwell's privacy goals

Maxwell protocol reveals:

- Total liabilities
- Some info about account sizes
- Total assets
- Addresses in use

Non-goal: completely conceal number of users

Provisions at a high level

Alice	b _A
Bob	b _B
Charlie	b _C
TOTAL LIABILITIES	$b_A + b_b + b_c + \dots$

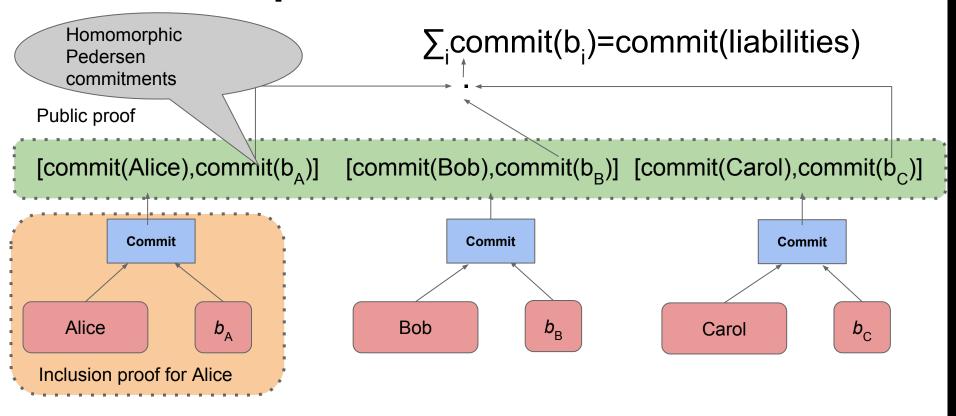
Proof-of-liabilities

commit(liabilities)

BITCOIN ADDRESSES

K ₁	b ₁	
K ₂	b ₂	
K ₃	b ₃	(
TOTAL ASSETS	<i>b</i> ₁ + <i>b</i> ₂ + <i>b</i> ₃ +	

Anonymity
set
Bitcoin network


Proof-of-assets

commit(assets)

Proof-of-solvency

commit(assets - liabilities) = commit(0)

Provisions proof-of-liabilities

Provisions proof-of-liabilities

⇒ range proof needed for each committed balance

Size of proof-of-liabilities

- Proof size is $\Theta(m \cdot n)$ for n users, m bits precision
- ~9kB/user at 51 bits (31 bits should be enough)
- easily parallelizable
- incrementally updatable

Provisions at a high level

Alice	b _A
Bob	b _B
Charlie	b _C
TOTAL LIABILITIES	$b_A + b_b + b_c + \dots$

Proof-of-liabilities

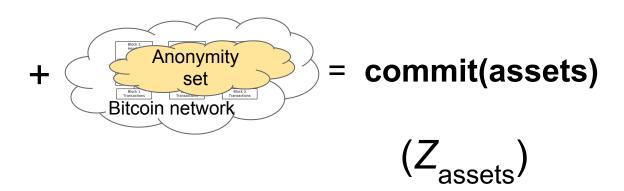
commit(liabilities)

BITCOIN ADDRESSES

K ₁	b ₁	
K ₂	b ₂	
K ₃	b ₃	(
TOTAL ASSETS	<i>b</i> ₁ + <i>b</i> ₂ + <i>b</i> ₃ +	

Anonymity
set
Bitcoin network

Proof-of-assets


commit(assets)

Proof-of-solvency

commit(assets - liabilities) = commit(0)

K ₁	b ₁
K ₂	b ₂
K ₃	b ₃
<u>t</u>	
TOTAL ASSETS	<i>b</i> ₁ + <i>b</i> ₂ + <i>b</i> ₃ +

NIZKPK:

-exchange knows private keys for a subset of Bitcoin addresses - total value at these addresses is committed to by Z_{assets}

private key	address	public balance	
k ₁	K ₁	b ₁	
?	K ₂	<i>b</i> ₂	
k ₃	K ₃	b ₃	
?	K ₄	<i>b</i> ₄	
?	K ₅	b ₅	
k ₆	K ₆	<i>b</i> ₆	

private key	address	public balance	committed balance
k ₁	K ₁	b ₁	commit(b ₁)
?	K ₂	<i>b</i> ₂	commit(0)
k ₃	K ₃	b ₃	commit(b ₃)
?	K ₄	<i>b</i> ₄	commit(0)
?	K ₅	b ₅	commit(0)
k ₆	K ₆	b ₆	commit(b ₆)

Public proof

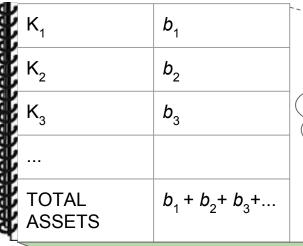
private key	address	public balance	committed balance	per-address proof	
k ₁	K ₁	b ₁	p ₁ =commit(b ₁)		
?	K ₂	<i>b</i> ₂	p ₂ =commit(0)		
k ₃	K ₃	b ₃	p ₃ =comm:		
?	K				
	"Either I know k _i and p _i is a commitment to b _i				
	OR p _i is a commitment to 0"				
K ₆					

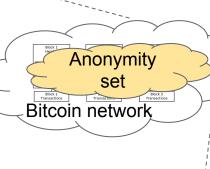
 $\sum_{i} \mathbf{p_{i}} = \text{commit}(\text{assets})$

Size of proof-of-assets

- Proof size is $\Theta(N)$ for N addresses in anonymity set
- ~350 bytes/address
 - 1 public key
 - o 2 elements of G,
 - 8 elements of Z_a
- easily parallelizable

Completing the proof of solvency


Alice	b _A
Bob	b _B
Charlie	b _C
···	
TOTAL LIABILITIES	$b_A + b_b + b_c + \dots$


Proof-of-liabilities

commit(liabilities)

BITCOIN ADDRESSES

Proof-of-assets

commit(assets)

Proof-of-solvency

commit(balance) = commit(assets)-commit(liabilities)

Finishing the proof of solvency in style

Given:

commit(balance)=commit(assets)-commit(liabilities)

- open commit(balance)
- range proof that commit (balance) is small

- ⇒ reveals surplus
- ⇒ proof that *surplus* exists

Extension: Valet keys

Keys are stored offline

Extension:

- replace \mathbf{g}^x for every key with \mathbf{g}^{xr}
- Prove knowledge of each g^{xr} to the base g^x
- xr is the valet key, safe to export

Provisions is practical

- 150 MB asset proof with maximal anonymity set
- 17 GB proof of liabilities for 2 Million users (Coinbase)
- Computes in ~ 1 hour on 1 machine
- Auditors check entire proof (~ 1 hour)
- Users verify inclusion (~ free)

Limitation: non-public public keys

- Provisions requires public keys for entire anonymity set
- Most bitcoin addresses are H(PubKey)
 - Public key revealed after first spend
 - Majority are one-time use...

About 430k/1.3M addresses can be used in Provisions

⇒ SNARKs could be used to build a more powerful solvency proof.

Thanks! buenz@cs.stanford.edu Paper: eprint.iacr.org/2015/1008.pdf Reference implementation: github.com/bbuenz/provisions